很多关注院校信息的朋友很希望了解中山大学研究生好考吗,今天焕发网为大家整理了相关文章,一起来看看吧!

中山大学基础数学研究生专业简介
中山大学基础数学研究生专业是数学与计算科学学院下设的在职研究生专业,数学与计算科学学院研究生教育设有基础数学、计算科学、概率论与数理统计、应用数学、运筹学与控制论、信息计算科学、统计学等7个科学学位的博士生、硕士生专业,应用统计1个专业学位的硕士生专业。中山大学基础数学研究生专业简介如下:
1、 泛函分析
研究内容:泛函分析是从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的问题。主要研究兴趣为:(1) Banach空间几何理论,如凸性(Convexity),可逼近性质(proximinality)等;(2)不动点理论;(3)临界点理论。
预备知识:数学分析,拓扑学,泛函分析。
应用领域:微分方程,小波理论等。
研究成果:解决了Banach 空间强凸性的共轭性质问题;引入强平空间等概念研究了凸性较差的Banach空间的性质;研究了Banach空尖的可逼近性质(proximinality)等。已在《数学学报》英文版,J. Math. Anal. Appl., Comput. Math. Appl和Nonlinear Anal.等发表学术论文五十几篇。
2、 几何分析
研究内容:利用偏微分方程理论为主要工具,研究微分流形的几何、拓扑及解析结构。
预备知识:偏微分方程,微分几何。
研究成果:1991年获中国科学院自然科学二等奖;1998年获国家杰出青年基金;2001年被聘为教育部“长江学者奖励计划”特聘教授,2004年获世界华人数学家大会最高奖——晨兴数学奖。
3、 辛拓扑与数学物理
研究内容:研究的主要问题为辛流形的Gromov-Witten不变量的Blowup公式、量子上同调群在Birational 手术下的变化、Gromov-Witten不变量与可积系统的关系和镜象对称。
预备知识:泛函分析、偏微分方程基础、抽象代数、微分几何、拓扑学。
研究成果:给出了辛流形的Gromov-Witten不变量的Blowup公式、验证了上同调群量子极小模型猜测对Mukai flop成立。
4、 动力系统、分形几何和时标动态方程
研究内容:主要研究自相似集的Hausdorff测度的计算和估计,时标动态方程解得稳定性,振动性等。
预备知识:实变函数论,测度论,常微分方程,差分方程等。
研究成果:
1.Baoguo Jia, Bounds of The Hausdorff Measure of The Koch Curve,Applied Mathematics and Computation. 182(2007).
2. Baoguo Jia, Bounds of the Hausdorff Measure of Sierpinski Carpet, Analysis in Theory and Applications, 22:4,2006.
3. Baoguo Jia, A generalization for Ostrowski's inequality in R^2, Journal of Inequalities in pure and Applied Mathematics, Vol.7, Issue 5,2006.
4. Baoguo Jia, A note on an inequalities for the Gamma function, Journal of Inequalities in pure and Applied Mathematics, Vol.7, Issue 5,2006.
5.Baoguo Jia, Bounds of Hausdorff measure of the Sierpinski gasket, J. Math. Anal. Appl. (2006), doi:10.1016/j.JMAA.2006.08.026.
6. Zhu Zhiwei, Zhou Zuoling and Jia Baoguo, A new lower bound of the Hausdorff measure of the Sierpinski gasket, Analysis in theory and applications, 22:1,2006, 8-19.
7.朱智伟,周作领,贾保国, 平面上一类自相集的Hausdorff测度与上凸密度,数学学报, Vol.48, No.3, 2005, 535-540.
8.Chengqin Qu, Zuoling Zhou, Baoguo Jia, The upper densities of symmetric perfect sets, J. Math. Anal. Appl., 292(2004) 23-32.
9.Jia Baoguo, Zhou Zuoling and Zhu Zhiwei, A lower bound for the Hausdorff Measure of the Cartesian Product of the middle third Cantor set with itself, Chinese Journal of Contemporary Mathematics (数学年刊), 2003, Vol. 24, No. 4, 341-350.
10.Jia Baoguo, Zhou Zuoling, Zhu Zhiwei and Luo Jun, The Packing Measure of the Cartesian Product of the Middle Third Cantor Set with Itself, J. Math. Anal. Appl., 288(2003) 424-441.
11.贾保国,周作领,朱智伟,三分Cantor集自乘积的Hausdorff测度,数学学报, Vol.46, No.4, 2003, 747 – 752.
12.贾保国,周作领,朱智伟, Cantor集自乘积的Hausdorff测度的下界,数学年刊, 24A:5(2003),575-582.
13.Jia Baoguo, Zhou Zuoling and Zhu Zhiwei, A lower bound for the Hausdorff Measure of the Sierpinski Gasket, Nonlinearity 15(2002) 393-404.
5、代数学
研究内容:Galois理论包括带Galois群的域、代数以及环的Galois扩张理论,是经典的域上Galois理论的延伸和推广,研究扩张的结构及群作用;当一个Hopf代数对于域、代数以及环的有Galois作用时,Hopf-Galois理论研究Galois扩张结构以及Hopf代数自身的结构。
预备知识:大学数学系本科的数学基础,较好的近世代数基础。
应用领域:群及代数的作用给讨论代数结构提供方法; Hopf-Galois理论是Hopf代数表示理论的一个分支,国内国外都有很多代数学家从事研究,是一个很活跃的研究领域;有限域的Galois理论在现代编码理论中有很好的应用;域上的Galois理论在讨论方程的根式解方面有很好的应用,目前仍有这方面的研究。
研究成果:
(1),投射群环的伽罗华定理,数学年刊17A:6(1996)737-744;
(2),关于非交换Hopf-Galois 扩张,中山大学学报自然科学版39(6)2000;
(3),H-separable rings and their Hopf-Galois extensions, 数学年刊19B:3(1998)311-320;
6、复分析
研究内容:主要研究Teichmuller空间及相关学科,包括拟共形映射,Klein群,黎曼面,三维流形,双曲几何,调和映射等.
研究成果:在Teichmuller空间及相关领域取得一些研究成果。
7、调和分析
研究内容:研究的主要方向为非光滑核的奇异积分算子理论及其应用、与微分算子相联系的函数空间, 算子的泛函演算等。
预备知识:数学基础主要包括微积分、线性代数、常微分方程、偏微分方程、复变函数、实分析、泛函分析等。
研究成果:在与微分算子有关的函数空间如BMO空间、Hardy空间以及非光滑核的奇异积分算子理论等取得了一系列重要的进展。主要论文有
1、 Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943-973.
2、 New function spaces of BMO type, the John-Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math. 58 (2005), 1375-1420.
3、 Littlewood-Paley functions associated to second order elliptic operators, Math. Z. 246 (2004), 655-666.
8、偏微分方程函数论方法
研究内容:研究奇异积分算子和方程,解析函数边值问题,及其实际应用。
预备知识:数学基础主要包括微积分、线性代数、常微分方程、偏微分方程、复变函数、实分析与测度论、泛函分析等。
应用领域:力学问题,数学物理(非线性方程,Painleve方程,随机矩阵)。
研究成果: 奇异积分算子及其在弹性问题中的应用。积分的渐近分析,主要包括Stokes现象、一致渐近、Riemann-Hilbert方法,及其在应用分析中的相关问题尤其是在数学物理中的应用。
9、渐近分析
研究内容:研究积分的Stokes现象,积分和正交多项式系的一致渐近展开,Riemann-Hilbert分析,Painleve函数,以及渐近分析方法在在数学物理中的应用。
预备知识:数学基础主要包括微积分、线性代数、常微分方程、偏微分方程、复变函数、实分析与测度论、泛函分析等。
应用领域:力学问题,数学物理(非线性方程,Painleve方程,随机矩阵)。
10、偏微分方程
研究内容:偏微分方程的理论与应用和相关课题。目前主要研究肿瘤生长自由边界问题和非线性发展方程,今后若干年内将主要研究Fourier分析中的振荡积分和Fourier积分算子理论以及与之相关的各类非线性发展方程的适定性与解的整体存在性理论。
预备知识:偏微分方程,常微分方程,泛函分析,调和分析等。
应用领域:物理学、力学、化学、生物学等。
研究成果:查mathscinet, 在“author”一栏输入“Cui, Shangbin”即可查阅到几乎全部的研究工作。
11、代数学及其应用
研究内容:Hopf代数和量子群,及相关的李代数与Kac-Moody代数,交换或非交换环论与模论,同调代数与代数表示论等。
预备知识:抽象代数.(有几何与物理背景知识更好)
应用领域:理论物理与非交换代数几何, 编码、密码与计算。
研究成果:量子交换代数及其对偶,中国科学, 1997。Hopf代数的扭曲积与量子偶,科学通报,1999。
12、数论及其应用
研究内容:丢番图逼近和丢番图方程:主要研究代数数的有效代数逼近和一些丢番图方程的解,并用丢番图方程来研究二次域类数。同时还研究数列的无理性与超越性。差集理论:主要用代数数论表示论的方法研究某些差集的不存在性。密码学理论基础:主要用有限域和分圆域理论研究密码学中的一些问题。
预备知识:数论、代数、复分析。要求有较好的数论和代数基础,或数论与复分析基础。
应用领域:有很好的编程能力、计算能力和较好的数论基础。
考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部官网,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:

中山大学研究生好考吗
1、考取
中山大学
的研究生总体难度很大。
2、考研难易主要看招生单位所处的地域、名气、排名等,。中山大学是211/985高校,所在城市位于广东。
3、中山大学研究生复试分数线和报录比也是反映该校考研难不难的重要指标,中山大学相比高一些。
中山大学校园
中山大学(Sun Yat-sen University),简称中大,位于
广东省广州市
,由
中华人民共和国教育部
直属,是教育部、国家国防科技工业局和广东省共建的综合性
全国重点大学
。
位列国家“双一流”、“
985工程
”、“
211工程
”,入选国家“珠峰计划”、“111计划”、“2011计划”、卓越法律人才教育培养计划、卓越医生教育培养计划、国家大学生创新性实验计划、国家级大学生创新创业训练计划、国家建设高水平大学公派研究生项目。

中山大学考研难吗
焕发网(https://www.hfkaoyan.com)小编还为大家带来中山大学考研难吗的相关内容。
考研中山大学难度是比较大的。
中山大学是全国重点大学之一,每年考研报名人数众多,竞争十分激烈。尤其是一些热门专业,报考人数更是众多,如临床医学、计算机科学与技术等专业。中山大学研究生入学考试难度较大,不仅要求考生掌握扎实的基础知识,还需要具备较高的分析和解决问题的能力。同时,中山大学的考试科目和内容也相对较多,考试时间较长。
中山大学对复试的要求也十分严格,除了面试外,还需要进行学术论文写作、英语口语等多项测试。其中,学术论文写作对考生的能力要求较高,需要具备一定的研究能力和文献查阅能力。
总之,考研中山大学难度较大,需要考生具备扎实的知识基础、较高的学术能力和优秀的综合素质,才能有更好的准备和表现。
考研的注意事项
1、提前规划:考研是一项长期的备考过程,需要提前规划自己的时间和复习计划。要制定合理的学习计划,包括每天、每周和每月的任务和目标,以确保有序、高效地进行复习。
焕发网
2、精选资料:考研的教材和参考书很多,需要根据自己的实际情况和复习进度来选择。一般来说,应该优先选择重点、难点和常考的内容,以提高复习效率。
3、坚持练习:考研需要不断地做题、练习,提高自己的基础知识和解题能力。可以结合历年真题和模拟题进行练习,同时要及时总结、归纳错题和易错点。
4、保持身体健康:考研需要长时间的高强度学习,要注意保持身体健康。可以适当进行体育锻炼,保证充足的睡眠和饮食,避免熬夜和过度劳累。
以上就是焕发网为大家带来的中山大学研究生好考吗,希望能帮助到大家,更多相关信息,敬请关注焕发网!更多相关文章关注焕发网:
www.hfkaoyan.com免责声明:文章内容来自网络,如有侵权请及时联系删除。